Friday, August 27, 2010

SQL Server Analysis Services (SSAS)

Introduction


Microsoft SQL Server Analysis Services (SSAS) delivers online analytical processing (OLAP) and data mining functionality for business intelligence applications. Analysis Services supports OLAP by letting you design, create, and manage multidimensional structures that contain data aggregated from other data sources, such as relational databases. For data mining applications, Analysis Services lets you design, create, and visualize data mining models that are constructed from other data sources by using a wide variety of industry-standard data mining algorithms.



The basic idea of OLAP is fairly simple. Let’s think about that book ordering data for a moment. Suppose you want to know how many people ordered a particular book during each month of the year. You could write a fairly simple query to get the information you want. The catch is that it might take a long time for SQL Server to churn through that many rows of data.



And what if the data was not all in a single SQL Server table, but scattered around in various databases throughout your organization? The customer info, for example, might be in an Oracle database, and supplier information in a legacy xBase database. SQL Server can handle distributed heterogeneous queries, but they’re slower.



What if, after seeing the monthly numbers, you wanted to drill down to weekly or daily numbers? That would be even more time -consuming and require writing even more queries.



This is where OLAP comes in. The basic idea is to trade off increased storage space now for speed of querying later. OLAP does this by precalculating and storing aggregates. When you identify the data that you want to store in an OLAP database, Analysis Services analyzes it in advance and figures out those daily, weekly, and monthly numbers and stores them away (and stores many other aggregations at the same time). This takes up plenty of disk space, but it means that when you want to explore the data you can do so quickly.

No comments:

Post a Comment